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’ ABSTRACT

3 ,:> The generalized multivariate median of H. Oja is used to define a
N

N multivariate notion of quantile, or rank, and to define a measure of

~

‘ scatter of multivariate linear models. The latter, when applied to the
& one- and two-sample bivariate location models, yields affine invariant
\

. analogs of the Wilcoxon rank-sum and signed-rank tests, and of the

- — e’ ,
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: KEY WORDS: affine invariance, bivariate location model, disperaion

3 measures:\generalized median, multivariate linear models, multivariate
‘: quantile, multivariate rank, permutation tests, R-estimates, Wilcoxon
tests. ; Accrsni For
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1. INTRODUCTION

P S R ™

This paper introduces a notion of multivariate quantile or rank
o and uses it to develop affine invariant analogs of rank tests and -
| R-estimates in the one- and two-sample bivariate location models.

Bickel (1964) investigates the non-affine invariant vectors of
medians and medians of pairwise averages. These are the Hodges-Lehmann
(1963) R-estimates derived from the application of the univariate sign
and Wilcoxon signed rank statistics, respectively, to the components.

In comparing these estimates with the sample mean vector, Bickel

concludes that despite encouraging results on robustness and efficiency

there remains some pathological behavior of these estimates when the

" components of the data vectors are highly correlated. He further

b concludes that the bad behavior may be due in part to the lack of

affine invariance of these estimates. Bickel (1965) draws a similar

f conclusion for tests based on vectors of univariate rank statistics. A

. different robust estimate, the spatial median 3, which minimizes the sum
of distances from 3 to the data vectors also fails to be affine

invariant; see Gower (19T4) and Brown (1983). In addition, there may

RN

be compelling reasons based on the measurement scales in the model to

seek affine invariant rank methods.

Lt NN
LN

0ja (1983) defines a generalized median 8 which minimizes a

IR

measure of scatter defined by the sum of areas of triangles formed by

taking 6 along with pairs of data points as vertices. The Oja

. generalized median is affine invariant. Oja and Niinimaa (1985) study
- the efficiency of the generalized median and, in the case of bivariate

normality, show it to be as efficient as the spatial median.

- We introduce a bivariate quantile (or rank) based on the gradient




of Oja's measure of scatter. We use this quantile to develop affine

invariant tests and estimates in the one- and two-sample bivariate

location models. The tests are analogs of the Wilcoxon signed rank

.l;!JJf

test and the Mann-Whitney-Wilcoxon rank sum test, respectively, and the

estimates are bivariate analogs of R-estimates., Our approach is

% similar to that of Jaeckel (1972) and developed in Hettmansperger {198k,
Chapter 5). We first construct a me;;ure of dispersion of residuals in
a linear model. The dispersion is a linear function of the bivariate

residuals in which the coefficients depend on the size or quantile of

the residuals. This dispersion, which is related to Oja's scatter

measure, provides estimates through minimization and tests from its

.4
PR R |

gradient vector.

The quantiles and generalized median are discussed in Section 2

and the dispersion based on quantiles is defined in Section 3. The

.

o two- and one-sample location models are treated in Sections 4 and 5,
respectively, and the statistics are illustrated in Section 6.

2. THE BIVARIATE QUANTILE
g Letxlv..,xn,e be 2x1 vectors and let

- (1) T(6) =] § Alxg,x438)
i<j

where A(xi,xJ;e) is the area of the triangle formed with X{sXJ and 0 as

vertices. This is the 0ja (1983) measure of scatter. The value 8

.
Ed

which minimizes T(®) is the Oja generalized median of the bivariate

sample.
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Given xT = (xq,xp), define X' = (-x5,x;). Then X has the same

ol ol b

length as x and is rotated through »/2 radians in a counter clockwise

direction. It follows that

s AP LI,

2) o) =% 37 lx-2)To-x) ).
i<y J i i

The quantile vector Q(6) is defined by Q(8) = VT(8), the vector of
partial derivatives of T(8). Thus the bivariate quantile has both
magnitude and direction. Quantiles with largest magnitude correspond to 6
N being near or beyond the convex hull of the sample. Tpose with small
’ ‘magnitude correspond to points well embedded in the sample. Further, -Q(8)
provides the direction of steepest descent on the convex surface defined by

f T(e) and points towards the mass of the sample. An equivalent definition

» 2

of the 0ja generalized median 5 is
(3) Q(e) = 0O,

& where "i0" means that | Q(8) | is a minimum. The equation (3) may determine
a single point or a convex set of points from which the median can be
" selected; see Oja (1983).

Note that

T _ xi xJ 8
(k%) (omx) = doe( ! | -

1o "

Now, from (2), it is easy to show that

--,.-';‘i'u"'l'

A AR

L
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(%) Qe) =% Y3 u(xi.xj;e)
i<y
where
xi xJ 0
(5) u(xi.xj;e) = sgn{det (1 1 1) }(iJ-ki).

The vector u(xj,xj;8) has magnitude Ixi-xj | and direction perpendicular to
and away from the chord defined by (xi,xj) toward §; that is, u(xj,xj;8) =
ii—ij if the order xi,xJ,e is clockwise, but ij*ii if the order xi.xJ.e is
counter clockwise. Hence, Q(8) is ¥ the sum of "repulsion" vectors
u(xi.xJ;e) away from the chords defined by pairs of points (xi,xJ) toward
8.

Using the geometry described in the previous paragraph, or by

algebraic manipulation of (Y4), it follows that
(6) I Qx4) =0,

so the sample quantiles are centered.

In addition, the following observations can be helpful in determining
quantiles or locating the generalized median:

(1) When three chords form a triangle, the sum of repulsion vectors {is
zero for any 6 within the triangle; see Figure 1. More generally,
if A is a closed, convex loop of chords, the sum of repulsion
vectors is zero for any & in A.

(11) If 8 is on the line extended indefinitely through two data points,

then the repulsion vector due to those points is zero.

A i




(iii) 1If e lies outside of a triangle of chords, then the sum of repulsion

vectors due to the chords is twice the repulsion vector of the most

- transverse side. See Figure 1. Calculating rules are possible for
other convex polygons, but they are too complicated to be of much
practical value.

The graph of all lines through pairs of data points (Xi,XJ) and

extended indefinitely in both directions breaks the plane into many

A

]
»

polygonal regions. The quantile Q(8) changes as 0 passes from one region

to another., The quantile on a border is the average of the quantiles in

e
PR

the contiguous polygons. A computer algorithm is the most efficient way of

~ computing gquantiles. The following remarks provide some insight into the
computation of quantiles without using a computer.
(a) To find Q(8) use (i) to eliminate as many closed loops of

E: chords containing 0 as possible., Parts (ii) and (iii) often provide

further reductions. Then Q(8) is the sum of the repulsion vectors

vl

Pl

due to the remaining chords.

WIVINVINR

.

(b) To locate the generalized median @ (or median set) delete successive

closed loops using (i) and beginning with the convex hull and

,l'-'

.

moving inward. When no further reduction is possible, the resulting

P

configuration of extended chords must be examined to find @ that

head 1y

minimizes | Q(8) |. Generally, all that remains is either one region,

whence all 6 inside are medians, or one region cut by concurrent

diagonals, whence the intersection point of the diagonals is the

-

median., It is quite possible, however, that 3 is on a border

»
L
'y

between polygonal regions. This method is equivalent to deleting

Ve

A

polygons in stages; at each stage, delete all regions with a side

which is part of the current outer boundary. A new boundary
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forms at each stage. Stop when there are no further boundaries to

Pt etesVa ae

eliminate, See Figure 2.

ALMLA

Thus the quantile vector generalizes the idea of a centered rank in a

é univariate sample. The magnitudesl Q(xi)| order the depth of the
observations in the sample, and the directions ~-Q(xj) point toward the

; center of the data.

3

é In the next section we introduce a measure of dispersion based on the

quantiles. We show that it is related to the 0ja scatter measure (1).

- Put Figures 1 and 2 about here -

- 3. DISPERSION

Jaeckel (1972) derived R-estimates in the linear model from a measure
of dispersion of the residuals. In the univariate linear model, let the
residual r; be given by r; = yi—a-ézs where éi is a 1xp row vector of known
values, B is a px]1 vector of unknown regression parameters and a is an
unknown scalar intercept parameter., Then an R-estimate of 8 is defined as

- the vector 8 that minimizes

n
(7 D(8) = 7§ [Rank(yi-zzﬂ) - (n+1)/2J(yi—zIs).
{21

This dispersion measure is invariant with respect to a. Jaeckel showed
that § generalizes the notion of an R-estimate from simple location models

to the linear model. McKean and Hettmansperger (1976) developed tests for

Wt

DRI N N
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HB = 0, based on (7), where H is a specified qxp matrix. See

Hettmansperger (1984, Chapter 5) for the details,
The multivariate linear model can be built by appending univariate

linear models in the following fashion:

Let Y be an nxq matrix in which the n rows are independent random vectors

. such that

(8) EY = E
T
/

where Z is an nxp matrix of given regression constants and 8 is a pxq

¥ matrix of unknown parameters. If Y(1) and g(i) are the ith columns of Y
? and 8, respectively, then EY(1) = zg(i) i3 the univariate linear model
described in the previous paragraph.

t. Let ry = Y; - 8Tz; denote the ith qx1 residual vector where zg is the
3 ith row of Z. Then (7) becomes

. (9) D(8) = ] QT(rylry.

< In the following sections we will consider the special cases of the two-
and one-sample bivariate location models. First, however, we will show

that in the bivariate case (q = 2), D(8) given by (9) is related to QOja's

o scatter measure (1).
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Theorem.

(10) D(B) = b Alrs ,ry,ry)
§<§<£ gtk
Proof. Since ] QT(ry) = 0 we have J QT(ri)rJ = 0.
i

Hence,

p(8)

2 Q?(ri)ri
i

z QT(ri)(ri-rJ)

rj rk ri

b Sgn{det(l 11 )} (fg-£5)T(ri-ry)

A(rj;rk!ri)

5 &

Z 2 A(rjarkari)
ijk
8

. 2 z 2 A(rj,rk,ri)
i<ji<k
Thus, our dispersion measure is proportional to the sum of areas
of triangles with residuals at the vertices. The scale invariant
R-1like estimate is the matrix B that minimizes this sum of triangular

aAreas.

L, THE TWO SAMPLE LOCATION MODEL

In the bivariate two-sample location model the matrix 8 in (8) can
be replaced by a vector. The intercept part of the linear model does
not affect the difference in locations. Accordingly, in the bivariate

two-sample problem there are njy observations X1,e+45Xn] and n2

observations y1,...,¥ny. Let A be the location shift vector applied to
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the y- sample, so that the residuals are either x3 or y3-A. Then the

A

terms of D are areas of triangles whose vertices number s from the

x-sample and 3-s from the y- sample, for s = 0,1,2,3. The next result

{3 ]
a s s

shows that, similar to the univariate case, the dispersion depends on

.
%

the y-x differences.
T Theoren.

(11) D(a) = h{consta.nt + 11T Alygexiayiexs.s)
kK 1<j

—:Z +111 A(Yj’xiaYk-xi.A)}
i j<k

Proof. Apply D in (10) to the combined samples. Note that areas are
'1 not affected by the same displacement applied to all three vertices or
' by sign changes. Hence, areas that involve three x's or three y's do
not depend on A. We now have

D(a) = h{constant +7 7
k 1

I Alxi,x3,yx-8)
<j

K »
..I 'I T .-

'l
Y.

719 A(yJ-A,yk-A,m},
i j<k

but A(xj,xj,yg-8) = A(yk-xi,yk-xJ,A) and

'l‘l’.l’" .,

A(yJ-A,yk—A,xi) = A(yJ-xi,yk—xi,A). This completes the argument.

The gradient of D(A) is given by
o (12) s(a) = 1p X z 2 u(yk-xi,yk-xJ;A)
- K i<

+ 1 2 E Z u(YJ—Xi,Yk-xi;A).
. i i<k

*
»

.“a
A

It is sufficient to consider testing the null hypothesis Hg: 4 = 0

n

A

against either a general alternative Hy: A # O or some directional

A LS

5

™
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alternative stating that A differs from O in some fixed direction.
A test based on the quantiles uses S = S(0), the gradient of D(a)
evaluated at the hypothesized value.

The next result shows that, like the univariate rank sum
statistic, S reduces to the sum of the x-quantiles in the combined

: sample.

Theorem.

. (13) s = ¥ Q(xy)
i=1

Proof. From (12) we have
=1 11 ulexg,-xy5-yx) + Z 3 Y ulyg,yxsxi)
k i<j i j<k
=1 I ulygvisxa) = 11§ ulxiaxgsyg).
i j<k k 1<j
Note that u(xj,xjsyk) + ulxy,yx3xi) + ulyx,xi5x3) = 0 and recall from (6)

- that § § J ulxj,xx;x3) = 0.  With these facts, 2S5 reduces to
i j<k

%u(n Yisxi) + 1 1 1 ulxg,yisxg)

< i#§ k

P
' + 11T ulxy,xgsxg)
- i j<k
: which, when compared to (4), is seen to be the result stated in the
theorem.

The test statistic is a clear analog of the Mann-Whitney-Wilcoxon

rank sum statistic in the univariate case. The set x; + b,000xpy + 4
n1+n2
( )
|
drawn from the combined x + A and y set of size nj; + no., Hence,

is one of equally likely subsamples of ny bivariate observations

standard permutation arguments show that S(A) = § Q(x4+A) has
i

LN M

y (..- RN (SO F O GO 5 (L RO RN

- . T
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expectation 0. The natural estimate cf A is A such that s(A) = O,

2" s s w2 4

This is the analog of the Hodges-Lehmann (1963) estimate of shift in the
univariate two sample problem. Equation (12) shows that A is an Oja
generalized median computed on the cross sample differences.

Under the null hypothesis Hgp: A = 0, the permutation argument

] shows that ES = 0 and the covariance matrix of S is

. n.+n

X n,n 172 T

X (14) c = = I ozl

(nr+né)(hr+n2-1) 1=1

where Z1sevssZny4np represents the combined sample. Furthermore, S

will be approximately bivariate normal for large nj,ns.

)
o

An approximately size a test for Hp: A = 0 against Hp: A = 0 rejects

O

; Hg if sTc-1s » x:(z) where x:(z) is the 1~a percentile from

'; a chi-square distribution with 2 degrees of freedom. To test Ho: A = 0

f; against an alternative specifying a fixed direction with unit vector v,

% project on v yielding vIS with null covariance matrix vICv. We reject Hg
if vTS/(vTCv)% > za where za is the 1-a percentile from the standard normal

:f distribution.

x: 5. THE ONE SAMPLE LOCATION MODEL

2 Suppose X{,...,Xn is a sample from a bivariate distribution with the

3 property that x-8 and 8-x have the same distribution. Then 8 represents

3 the center of the distribution.

;

- In testing Hp: 8 = 0, it i{s difficult to develop a simple sign-test

analog based on the Oja generalized median 8. (6). The natural test




function is Q@ = Q(0) =¥ } § u(x4,x4;0),but a simple randomization argument
i<j
does not provide the null distribution. The main goal of this section is

to develop an analog of the Wilcoxon sighed rank test.

" A standard device for producing one-sample univariate rank methods
from two-~sample procedures is to create a second, artificial sample that
consists of the negatives of the original sample. When we consider the
univariate rank of -xj, say, relative to xj,e..,x, the result is the
number of sums X3+Xj,3=1l,..,n {or averages (x1+xJ)/2] that are negative.
By doing this for each data point, we find that the two-sample rank
method produces counts of the signs of the pairwise sums or averages,
and these counts are related to the ranks of the absolute values; see
Hettmansperger (1984, Section 2.3). Hence, we arrive at the one sample
signed rank statistics. This device, in the bivariate case, allows us
to avoid the problem of introducing absolute values in the plane.

Returning to the bivariate case, let -x1,+..,~x5 be the second,
artificial sample. For inference on 6, following the discussion in the

previous section, let & = 20 and consider
n

(15) s(a) = ¥ Qop(-xy+a)
i=1

vhere the subscript 2n on Q indicates that the quantile of -xi+A is
computed relative to =xj+A,eee,=Xp*8,X14+4¢,Xns The next result shows
that we need only consider Qn(-x1+A); that is, the quantile of -xj+A

relative to Xj,se.,Xpe
Theorem.

n
(16) s(a) = 2 ] Qu(-xy+a).
i=1

P T N S T S S Y . "Rt e "ata"e e a-"a -
.........
.............

------
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Proof, Let A = 0 without loss of generality. Now
thn(-Xi) = z E u(xJ ,xk;-xi)
J k

u(-xJ,xk;-xi) + § E u(xJ,-xk;-xi)

Summing on 1, § Cj = O. Since

u(a,bse) = -u(v,c;a) - ula,c;b) and ula,bje) = -ul-a,~b3-c),
1B1 =7 11 {-ulxic,=xg3-x5) = uloxy,-xg3x)
i3jk
- u(-xk,-xi;xJ) - u(xJ,-xi;-xk)}
=111 {'u(xks'xi§'xj) + ulxg,xq3-xg)
ijk
+ ulxy,xi3xy) = ulxg,=xq3-x)}.

Group the first with the fourth terms and the second with the third

terms to get }Bj = - YBy + 22Ai. Hence, }By = JA4 and

bIQon(-x4) = 2JA;

2.2 7 ] T ulxyg,xg;-xy)

i j<k
=871 1l ] ulxy,xg;-xq)
i<k

which reduces with an application of (4) to the result stated in the

theorem.

This theorem shows that the estimate of location 3 = 2/2 is

defined by S(4) 2 0. A further interpretation is possible. Note that
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Qn(-xi‘i'A) =1p Z Z u(xjsxk;‘xi"’A)

i<k
=]l U(Xi+xj,xi+xk;A).
<k
Hence,
s(a) = p Z 2 2 u(xi+XJ,xi+xk;A),
i<k 1
° X, +X X +xk
(17) s6) =5 11 uL, 55 0.
j<k 1

Analogous to the univariate Hodges-Lehmann estimate which is the
median of the pairwise averages, the bivariate estimate 8 is an Qja
generalized median computed on the coupled pairs displayed in (17). 1In
effect, (17) shows how the data can be symmetrized before the median

operation is applied.

For testing the
XQn(-xi). Under Hg:
easier to work with.

Qn(=x3) = =Qon(xg).

hypothesis Hp: 8 = 0O we could use either JQopn(-xj) or
8 = 0 the randomization distribution of JQon(-xj) is
The first line of the proof of (16) shows that

Under the null hypothesis each has probability 1/2 so

that the statistic S = JQon(~x§) has ES = 0 and covariance matrix
i

T
C = IQ2n(-x1)Qn(xy).
Tests of Hg: 8 = 0 are carried out as described in the last paragraph of
the last section. The test statistic is a scale invariant bivariate analog
of the Wilcoxon signed rank statistiec,

6. EXAMPLES

In this Section the two-sample and one-sample bivariate rank methods

are illustrated through application to two data-sets. First consider the
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two sample test. In the following data from Hettmansperger (1984, p.291),

the data consist of levels of two biochemical components in brains of mice,

T = (Xq,X2).

M Control group

xy: 1.21  0.92 0.80 0.85 0.98 1.15 1,10 1..02 1.18 1.09

x2: 0.61 0.h3 0035 O.he 0.h2 0.52 0.50 0053 Oohs 0.’40

Treatment group

¥y 1.0 1.17 1.23 1.19 1.38 1.17 1.31 1l.30 1l.22 1,00 1l.12 1.09

¥o: 0.50 0.39 O.k4 0.37 0.42 0.45 0.41 0.47 0,29 0.30 0.27 0.35

The corresponding quantiles of the control group observations

among the combined control plus treatment sample are

\ RN A

X1 .89 -9.01 -8.82 -9.40 -6.78 -.51 -3.25 -6.24 2.28 -3.04

N N

Xz: 18053 3.65 -6.26 9037 076 15070 13.63 15.85 5.27 -u-56

and the sum of quantiles is sT = (-43,88, 71.94). The standardized
- test of no location shift between control and treatment populations is
sTc='s = 15.137, which is highly significant when referred to x§. By
:; comparison, a univariate rank method applied componentwise yields
éi x% = 14,22; see Hettmansperger (1984,p.292).
For a one-sample test, the following data from Hettmansperger (1984,
- p.286) are systolic and diastolic blood pressures of 15 adult male Peruvian

. Indians.
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ot Ll

L_H I

Cole

L NN NN N &

x3 170 125 148 1bo 106 108 12k 134 116 114 218 138 134 124 11k

X2 76 75 120 T8 T2 62 T0 64 76 Th 68 T8 86 64 66

To test that the center of the bivariate population is (120,80), “consider

the sample of (yy,yp) = (x1—120, Xo-80) values and the reflected artificial

sample of values (-y;, -yp). The quantiles of the reflected sample among the

combined sample are

¥ -3271 -1441 -1205 -2814 2064 U4  ~1346 -2241 596
y2 1145 1579 -3184 1190 1321 2858 2522 3276 602
¥ 1052.5 -~410 =-2u483 -2298 -1384.5 220
\Z) 1088.5 2822 1238 -552 3634.5 2911

and the quantile sum is ST = (-14017, 22469). The standardized statistic
2
sTc™1s = 8.u49, highly significant when referred to x». The corresponding
) :
X2 for the componentwise univariate rank method has the same value; see

Hettmansperger (1984,p.287).
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denoted by 1,2,... (some regions are too small

to be numbered).
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